Definition

A keyway plug gauge is a precision measuring tool designed to inspect the width and depth of keyways (slots or grooves) in shafts, hubs, or other mechanical components. It is a type of limit gauge, consisting of two or more fixed dimensions (go and no-go ends), to quickly determine if the keyway meets specified tolerance requirements without requiring numerical measurements.

Functions

- 1. **Keyway Width Inspection**: Verifies that the keyway width is within the allowable tolerance range using "go" and "no-go" ends.
 - o **Go End**: Must fit into the keyway if the width is at minimum acceptable size.
 - No-Go End: Should not fit if the width exceeds the maximum allowable size.
- 2. **Depth Verification (Optional)**: Some designs include a depth gauge or step feature to check keyway depth.
- 3. **Rapid Conformance Testing**: Provides instant pass/fail results for high-efficiency quality control in manufacturing.

Structural Components

- 1. **Go End**: The smaller-dimensioned end used to check the minimum acceptable keyway width.
- 2. **No-Go End**: The larger-dimensioned end used to check the maximum allowable keyway width.
- 3. **Handle/Shank**: Provides grip for manual operation, often marked for easy identification of go/no-go ends.
- 4. **Depth Measuring Feature (Optional)**: A stepped or extended portion to assess keyway depth (common in combined width/depth gauges).
- 5. **Material**: Typically made of hardened steel or carbide for durability and resistance to wear, with corrosion-resistant coatings (e.g., chrome plating).

Application Scenarios

- **Mechanical Engineering**: Inspecting keyways in shafts, gears, pulleys, and couplings to ensure proper fit with keys (e.g., square keys, Woodruff keys).
- Manufacturing Industries:
 - Automotive: Checking keyways in crankshafts, transmission components, or drive shafts.
 - o Industrial Machinery: Quality control for keyways in motors, pumps, or heavy equipment parts.
 - Aerospace: Ensuring precision in keyway dimensions for critical mechanical assemblies.
- Maintenance and Repair: Verifying worn keyways during component refurbishment.

Maintenance

1. Cleaning:

- Wipe with a lint-free cloth after each use to remove debris, oil, or coolant.
- Use a mild solvent (e.g., isopropyl alcohol) for stubborn residue, then dry thoroughly.

2. Calibration:

o Periodically check against master gauges or precision measuring instruments

- (e.g., every 3–6 months).
- Recalibrate or replace if wear exceeds tolerance limits (e.g., visible scratches on measuring surfaces).

3. Storage:

- Store in a padded case or protective holder in a dry, temperature-controlled environment to prevent rust or deformation.
- Keep go/no-go ends protected from impact or contact with hard surfaces.

4. Inspection for Wear:

- Regularly examine measuring surfaces for signs of abrasion, dents, or corrosion.
- Replace the gauge if wear affects measurement accuracy (e.g., rounded edges on go/no-go ends).

Troubleshooting (Fault 排除)

Issue	Possible Cause	Solution
Go end does not fit	Keyway width is too narrow.Gauge is dirty or damaged.	Verify part dimensions with a micrometer.Clean the gauge or check for physical damage (e.g., burrs, rust).
No-go end fits	Keyway width is too wide.Gauge is worn or mis-calibrated.	Re-inspect the part with a precision tool.Recalibrate the gauge or replace it if worn.
Difficulty inserting the gauge	Debris in the keyway.Rough edges or burrs on the gauge or part.	Clean the keyway and gauge.Deburr the part or polish the gauge's measuring surfaces (if minor wear).
Inconsistent results	 Gauge is not properly aligned with the keyway. Excessive operator force during inspection. 	 Ensure the gauge is inserted straight and perpendicular to the keyway. Use gentle, consistent pressure; avoid forcing the gauge.

Performance Characteristics

1. **Precision**:

- Designed to match industry standard tolerances (e.g., ISO 7739, ANSI B107.47)
 for keyways and keys.
- Typical measurement accuracy: ±0.005 mm for high-precision applications.

2. **Durability**:

- Hardened steel construction with corrosion-resistant coatings for long service life.
- Resistant to wear from repeated use in production environments.

3. Ease of Use:

- Simple "go/no-go" design requires no special training for operation.
- Clear labeling of go/no-go ends for quick identification.

4. Efficiency:

- o Enables rapid inspection, ideal for high-volume manufacturing.
- Reduces reliance on time-consuming manual measurements (e.g., calipers).

5. **Compatibility**:

Available in standard sizes for common keyway widths (e.g., 4 mm, 6 mm, 10 mm) or custom-made for non-standard applications.

